Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Templated wide band-gap nanostructures

Identifieur interne : 00A391 ( Main/Repository ); précédent : 00A390; suivant : 00A392

Templated wide band-gap nanostructures

Auteurs : RBID : Pascal:04-0268336

Descripteurs français

English descriptors

Abstract

In this two-pronged work we report (a) a study of defect nucleation in three-dimensional confined nanoislands and (b) a surface-elasticity induced size effect in the optoelectronic properties of embedded and templated semiconducting nanostructures. Several key features in the design of nanostructure templates are analyzed and dislocation free contour maps are presented for combination of various lattice mismatches, substrates, and geometrical dimensions. Unlike the case for thin epitaxial films, it is found that for nanostructures, below a certain critical lateral dimension, dislocation free structures of any thickness can be grown. With regards to the optoelectronic properties of nanostructures, while size dependency due to quantum confinement and electrostatic interactions are well known, we show that an additional size-dependent strain is caused by the distinct elastic behavior of surfaces and interfaces at the nanoscopic scale compared to the macroscopic scale. This is in contrast to the usual way strain is linked to optoelectronic properties, i.e., via classical elasticity, which ignores surface energies and is intrinsically size independent. Surface strains appear to be only influential in the nanometer regime due to appreciable surface-to-volume ratios. Among our major conclusions are that errors as large as 100 meV in band-gap prediction can incur if this size-dependent surface effect is ignored. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0268336

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Templated wide band-gap nanostructures</title>
<author>
<name sortKey="Alizadeh, A" uniqKey="Alizadeh A">A. Alizadeh</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>General Electric, Global Research Center, Niskayuna, New York 12309</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>General Electric, Global Research Center, Niskayuna</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P. Sharma</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>General Electric, Global Research Center, Niskayuna, New York 12309</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>General Electric, Global Research Center, Niskayuna</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ganti, S" uniqKey="Ganti S">S. Ganti</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>General Electric, Global Research Center, Niskayuna, New York 12309</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>General Electric, Global Research Center, Niskayuna</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Leboeuf, S F" uniqKey="Leboeuf S">S. F. Leboeuf</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>General Electric, Global Research Center, Niskayuna, New York 12309</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>General Electric, Global Research Center, Niskayuna</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tsakalakos, L" uniqKey="Tsakalakos L">L. Tsakalakos</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>General Electric, Global Research Center, Niskayuna, New York 12309</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>General Electric, Global Research Center, Niskayuna</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0268336</idno>
<date when="2004-06-15">2004-06-15</date>
<idno type="stanalyst">PASCAL 04-0268336 AIP</idno>
<idno type="RBID">Pascal:04-0268336</idno>
<idno type="wicri:Area/Main/Corpus">00B530</idno>
<idno type="wicri:Area/Main/Repository">00A391</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Elasticity</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Internal stresses</term>
<term>Nanostructured materials</term>
<term>Size effect</term>
<term>Surface energy</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>6220D</term>
<term>6835M</term>
<term>6146</term>
<term>6225</term>
<term>8140J</term>
<term>Etude expérimentale</term>
<term>Gallium composé</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Nanomatériau</term>
<term>Elasticité</term>
<term>Effet dimensionnel</term>
<term>Contrainte interne</term>
<term>Energie surface</term>
<term>Bande interdite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this two-pronged work we report (a) a study of defect nucleation in three-dimensional confined nanoislands and (b) a surface-elasticity induced size effect in the optoelectronic properties of embedded and templated semiconducting nanostructures. Several key features in the design of nanostructure templates are analyzed and dislocation free contour maps are presented for combination of various lattice mismatches, substrates, and geometrical dimensions. Unlike the case for thin epitaxial films, it is found that for nanostructures, below a certain critical lateral dimension, dislocation free structures of any thickness can be grown. With regards to the optoelectronic properties of nanostructures, while size dependency due to quantum confinement and electrostatic interactions are well known, we show that an additional size-dependent strain is caused by the distinct elastic behavior of surfaces and interfaces at the nanoscopic scale compared to the macroscopic scale. This is in contrast to the usual way strain is linked to optoelectronic properties, i.e., via classical elasticity, which ignores surface energies and is intrinsically size independent. Surface strains appear to be only influential in the nanometer regime due to appreciable surface-to-volume ratios. Among our major conclusions are that errors as large as 100 meV in band-gap prediction can incur if this size-dependent surface effect is ignored. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>95</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Templated wide band-gap nanostructures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ALIZADEH (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHARMA (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GANTI (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEBOEUF (S. F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TSAKALAKOS (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>General Electric, Global Research Center, Niskayuna, New York 12309</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>8199-8206</s1>
</fA20>
<fA21>
<s1>2004-06-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0268336</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this two-pronged work we report (a) a study of defect nucleation in three-dimensional confined nanoislands and (b) a surface-elasticity induced size effect in the optoelectronic properties of embedded and templated semiconducting nanostructures. Several key features in the design of nanostructure templates are analyzed and dislocation free contour maps are presented for combination of various lattice mismatches, substrates, and geometrical dimensions. Unlike the case for thin epitaxial films, it is found that for nanostructures, below a certain critical lateral dimension, dislocation free structures of any thickness can be grown. With regards to the optoelectronic properties of nanostructures, while size dependency due to quantum confinement and electrostatic interactions are well known, we show that an additional size-dependent strain is caused by the distinct elastic behavior of surfaces and interfaces at the nanoscopic scale compared to the macroscopic scale. This is in contrast to the usual way strain is linked to optoelectronic properties, i.e., via classical elasticity, which ignores surface energies and is intrinsically size independent. Surface strains appear to be only influential in the nanometer regime due to appreciable surface-to-volume ratios. Among our major conclusions are that errors as large as 100 meV in band-gap prediction can incur if this size-dependent surface effect is ignored. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H35M</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A46</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60B25</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B80A40J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>6220D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>6835M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>6146</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>6225</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>8140J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanomatériau</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Elasticité</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Elasticity</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet dimensionnel</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Size effect</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Contrainte interne</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Internal stresses</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Energie surface</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Surface energy</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fN21>
<s1>166</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0423M000119</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A391 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A391 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0268336
   |texte=   Templated wide band-gap nanostructures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024